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In  this paper systems of non-linear integral equations are formulated which are 
equivalent to the Krook kinetic equation for steady problems in two and three 
space-dimensions. The boundary conditions used are discussed and some of the 
properties of the equations which are significant in their numerical solution 
pointed out. This work will then serve as a basis for the consideration of a 
sequence of particular problems to be presented in subsequent papers. 

1. Introduction 
It is the purpose of the present paper to formulate, and to discuss in general 

terms, systems of non-linear integral equations equivalent to the Krook kinetic 
equation for steady problems in two and three space-dimensions. This work will 
then serve as a basis for the consideration of a sequence of particular examples of 
such problems in subsequent papers of this series. 

In  the next section, we shall outline some of the background and motivation 
for such a study. In  $53 and 4, the integral-equation formulation of the steady 
Krook kinetic equation for problems in two and three space-dimensions will be 
derived. This is followed by a discussion of the boundary conditions employed. 
Finally, we shall describe a particular example and point out some of the proper- 
ties of the equations which are significant in their numerical solution. This will 
lead us to the specification of a sequence of problems, whose solution, it is 
hoped, will elucidate some of the structure of the general equations. 

2. Preliminary remarks 
Perhaps the most active area of research in theoretical gas dynamics and 

kinetic theory at the present time is the interface between macroscopic, con- 
tinuum theories and the more fundamental (in principle) microscopic, statistical 
theories. On the one hand, the Navier-Stokes equations of conventional gas 
dynamics can be modified and extended to reflect the insights of kinetic theory; 
on the other hand, the Maxwell-Boltzmann equation for the molecular velocity 
distribution function can be approximated by macroscopic continuum equations 
derived therefrom. (These two approaches are not mutually exclusive.) 

Seemingly, the Navier-Stokes equations are valid much further into the rarefied 
gas r6gime than their approximate kinetic theoretical derivation would suggest, 
but are known to be inadequate to describe narrow transition regions in the flow 
such as boundary, initial and shock layers. The relationship of these layers to the 
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‘continuum’ flow in which they are embedded is somewhat analogous to the 
regimes of validity of the Navier-Stokes and Euler equations in conventional 
fluid mechanics. One of the most fruitful areas for research in this field would 
seem to be the various attempts which have been, and are being, made to con- 
nect a kinetic theoretical description of the transition region to the adjacent con- 
tinuum. The alternative approach of deriving continuum-equation approxima- 
tions from the kinetic equation is much less general in the sense that a good deal 
of insight into the particular class of problems at hand is required, but excellent 
results can be obtained with relatively simple models (Anderson & Macomber 
1965; & Macomber 1965). Virtually all sensible approximation procedures 
embody the conservation of mass, momentum, and energy; these provide such 
powerful constraints that such gross effects as shock thickness, drag and heat- 
transfer coefficients can be rather insensitive to the details of the approximation 
procedure employed. This is an admirable situation for those concerned with the 
theoretical and empirical investigation of such quantities, but not from the 
point of view of those concerned with assessing the efficacyof, and differentiating 
between, approximation procedures. Consequently, a class of model problems 
for which both exact and approximate solutions can be obtained offers a very 
attractive avenue for investigating approximation procedures of all kinds. Such 
a class of model problems is available through the use of the Krook kinetic 
equation as an approximation to the Maxwell-Boltzmann equation. There is 
reason to believe that the essential physical phenomena are reasonably well 
approximated by the Krook equation through the whole range of Knudsen 
numbers. 

The steady Krook kinetic equation for a simple gas of identical molecules with 
no internal degrees of freedom, in the absence of external fields, can be written 

(1) 
(Krook 1955,1959) 

The distribution function f(v; x) is proportional to the probability density of 
molecular velocities v, as a function of position x. The left side of the equation 
represents the convective rate of change off; this is balanced by the rate of change 
off due to molecular interactions, which is represented by the term on the right. 
F(v; x) is the Maxwellian distribution given by 

(2) 

hv. afpx = v (x )  (B  - f ) .  

F(v; x) = n( 27rT)-+ exp - {(v - q)2/2T}. 

n, q and T are the local number density, flow velocity and kinetic temperature 
respectively, defined by the equations 

n = Sdvf(v; x), (3) 

nq = Sdvvj(v; x), (4) 

3nT+nq2 = dvv2f(v; x). (5) s and 

In this simplest of the hierarchy of statistical models (Fishman 1957, and Brau 
1965), there is but a single free parameter, the collision frequency v(x). This can 
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be chosen so that the temperature dependence of the viscosity or heat con- 
ductivity of the pseudo-gas, as determined by applying the Chapman-Enskog pro- 
cedure to the Krook kinetic equation, matches that of a particular real gas. We 
have assumed implicitly that the problem has been formulated in dimensionless 
form through a characteristic distance R ,  number density E ,  and temperature p ,  
from which we define a characteristic collision frequency F(E, p) and a character- 
istic velocity = (kF/m)*, where k is Boltzmann’s constant and m is the mole- 
cular mass. This choice of dependent and independent variables accounts for 
the form of P in equation (2) and the appearance in the kinetic equation of the 
Knudsen number h defined by 

h = q R v .  ( 6 )  

The Krook kinetic equation embodies the conservation of mass, momentum, 
and energy and possesses an ‘entropy’; however, its most important property 
for present purposes is the fact that the equation is non-linear only through the 
appearance of n, q, and T in P. This means that f is completely determined by 
its low-order moments. In  the case of the Maxwell-Boltzmann equation with 
molecular interactions described by the Boltzmann collision integra1,fis specified 
by a finite number of its moments only in the case of thermodynamic equilibrium. 
It is essentially this property of the Krook equation which allows one to obtain 
numerically-exact solutions of a class of model problems. As we shall show in 
detail below, one can express f as a functional of P by integrating the kinetic 
equation along the characteristics of the convective differential operator. 
Substituting this formal expression into equations (3)-( 5), we obtain a closed 
system of singular, non-linear integral equations for n, q, and T .  In  the course 
of this calculation, boundary conditions must be assumed. The question of 
boundary conditions will be discussed at greater length in $ 5 ;  suffice it to say 
for the present that we shall for simplicity consider a perfect accommodation 
boundary condition. Once the integral equations are solved for n, q, and T ,  f 
and all of its higher moments are accessible, in particular, such quantities as the 
stress tensor P and heat flux vector h defined by 

and 

A number of investigators have been, and are using the Krook kinetic equation 
as a physical tool in the study of particular physical phenomena (see, for example, 
de Leeuw 1965). While there is not yet enough evidence to suggest when this 
might be a reasonable approximation, there is evidence to the effect that the 
qualitative features of the phenomena are retained. In  default of any adequate 
means of solving the Maxwell-Boltzmann equation, even qualitative results 
are of considerable interest. In  the present work, however, we choose to adopt 
the attitude that the Krook kinetic equation is primarily a mathematical tool 
for investigating approximation procedures. In  the case of steady problems in 
one space-dimension, two problems-the Couette flow with heat transfer and 
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the structure of a plane shock wave-have been studied by a wide variety of 
approximation procedures. Restricting attention to the Krook kinetic equation, 
Willis (1960a, 1961, 1962, 1963) has considered the linearized Couette flow 
and heat-transfer problems, and Liepmann, Narasimha & Chahine (1926), 
Chahine (1963), and Chahine & Narasimha (1965) have considered the shock- 
structure problem. The integral-equation approach to these two problems was 
also considered by the author (Anderson 1963, 1965) in a collaborative effort 
with Prof. Max Krook and Dr H. K. Macomber to investigate the efficacy of a 
class of approximation procedures by comparing exact and approximate solutions 
of these model problems. The nature of the particular class of approximation 
procedures considered and comparisons of the results obtained are to be found 
in Anderson & Macomber (1965), and Macomber (1965). In  brief, the comparison 
of exact and approximate solutions of these model problems suggests that, with 
sufficient insight into the problem at hand, relatively simple and reasonably 
accurate approximation procedures for solving non-linear problems in kinetic 
theory can be developed. These results offer some modicum of justification 
for the use of such procedures in problems whose exact solution is not feasible. 
There remain, however, certain conceptual and computational obstacles to the 
development of such procedures for non-steady and/or multidimensional prob- 
lems. Consequently, extension of exact solutions of the Krook equation in these 
directions may aid in the development and evaluation of such procedures, and, 
incidentally, in the evaluation of the statistical model as a physical rather than 
a mathematical tool. 

As indicated above, I have chosen to consider the generalization of the integral- 
equation formulation of the Krook kinetic equation to steady problems in two 
and three space-dimensions. A few words seem in order as to why non-steady 
problems in one space-dimension, which are in some respects easier and more 
interesting, were not chosen. Using variants of the Krook equation, Willis 
(1960b) has considered the formation of a. plane shock wave by the impulsive 
motion of a piston, and Chu (1965) and Bienkowski (1965) have considered the 
formation of a plane shock wave from an initial density discontinuity. While the 
approaches used are rather different in each of the three cases, they have in 
common the problem of numerical stability endemic to initial-value problems. 
In  such problems, the space and time discretizations used must reflect the 
intrinsic scale of the relevant phenomena as well as, and in relation to, the ex- 
trinsic scale of the problem. In  the present context, the time discretization 
must be comparable with, or preferably smaller than, the smallest local mean 
collision time, rather than depending on a characteristic time based upon the 
motion of the shock wave. Such considerations essentially limit a straightforward 
numerical attack on the kinetic equation to a period of a relatively small number 
of mean collision times. It seems necessary to couple such a treatment of the 
initial layer on the microscopic time scale to a ‘continuum’ interior solution 
which varies on a macroscopic time scale. Such ‘ boundary layer ’ approaches are 
being investigated (see, for example, McCune, Sandri & Frieman 1963; McCune, 
Morse & Sandri 1963) but involve a substantial reconsideration of the whole 
framework in which the problem is to be studied. There is a strong analogy 
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between the sequential solution of an initial-value problem and the conventional 
iterative solution of the corresponding boundary-value problem. The rate and 
mode of convergence of the initial-value problem to the steady state has its 
parallel in the rate and mode of convergence of the iterative process. The limits 
imposed by questions of stability in the initial-value problems are mirrored in 
problems of slow or non-existent convergence of the iterative process. On the 
other hand, the steady problem has the advantage that one is not interested in 
the intermediate results obtained as the calculation proceeds, but only in the 
final answer. Consequently, one can often accelerate the convergence of the 
iterative process by destroying the analogy with the initial-value problem. 
The generalization of steady problems to  two or three space-dimensions seems 
then to offer the path of least resistance. 

3. Cylindrical formation 
Consider the Krook kinetic equation for a steady, two-dimensional problem. 

We regard f(v; x) as a function of x1 and x2 but not of x3, and, without loss of 
generality, define q3 = 0. Such a problem can be reduced to consideration of the 

I 

51 
FIGURE 1. Cylindrical formulation. 

(x3 = 0)-plane, and we define rand u as the projections of x and v on this canonical 
plane. The Krook kinetic equation can then be written 

hu.(af/ar) = v ( F - f ) .  (9) 

We shall obtain a formal solution of the equation by integrating along the 
characteristic line through r with direction u. 

Consider an arbitrary point P:r  in configuration space, which corresponds to 
a point within the gas (see figure 1) .  For an arbitrary point Q:  u in velocity space 
with u > 0, we define a characteristic line through P with direction 42 = u/u. 
Define s as a displacement co-ordinate with origin r and direction 2. The restric- 
tion of the Krook kinetic equation (9) to the characteristic (P, Q )  reads 

hu(d/ds) f (v ;  r + sa)  = v(F -f). (10) 
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Define a reduced co-ordinate t and collision frequency 7 by 

Then, equation (10) can be written 

Let B be the first boundary point encountered on traversing the characteristic 
in the -&-direction, through a distance b(r,a). Define 

c(r - b&) = T(r - bil) 6 ,  

a measure of the number of collisions a particle might suffer in traversing the 
characteristic. As discussed below, the distribution function f is assumed to be 
specified at  B; hence we have 

f(v; r) = f (v; r - ba)  dt P(v; r - si2) et/hu, (14) 

where, for simplicity, we choose the perfect accommodation boundary condition 

It will prove convenient subsequently to express the vector quantities x, v 
and q interchangeably in rectangular or cylindrical polar co-ordinates according 
to the equations 

(16) 

Note that the problem is not being completely reformulated in cylindrical co- 
ordinates, since this would introduce geometric pseudo-force terms and compli- 
cate the definition of characteristics. 

Since 3' is a functional of n, q, and T-the low-order moments of f-(14) 
defines f only implicitly. However, substitution of the formal expressions for 
f ,  in terms of P and the boundary data, into the defining relations (3)-(5), yields 
a closed, coupled set of singular, non-linear integral equations for n, q and 2". 
Once these integral equations are solved, f and all higher moments such as 
heat-flux vector and stress tensor components are available through (14), and 
the defining relations (7) and (8). As noted above, it is the fact that the distribu- 
tion function is uniquely determined by specification of its low-order moments 
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which allows numerically exact solutions of the Krook kinetic equation to be 
obtained . 

To complete the reduction of the Krook kinetic equation for a steady, two- 
dimensional problem to integral equation form, we first summarize the relevant 
equations, and then proceed to reduce them. Substituting (2) and (15) in (14), we 
obtain 

+ hU 

n,(r - ba)  
(27rT,(r - b&)}t 

[u - q,(r - b.ti)12 + w2 
f(v; r) = ~ _ _  

+"-) (19) 
[u - q(r - sa)12 + w2 

hu - 
Note that the parameters of the boundary term (c,  nB, q,, and T,) and those of 
the collision term (t ,  n, q, and T )  are functions of r and 42 but not of u. For sim- 
plicity, the arguments of these quantities will be suppressed hereafter. Using the 
cylindrical polar co-ordinates in velocity space defined by (17), (3)-(5) can be 
written 

n(r) = / 0 2 m d $ / r  duuSrn --m dwf(v; r) ,  (20) 

J O  J --m 

3n~+nq2 = / ~ ~ ~ J ~ d u u ~ / ~  --m dwf(v; r ) + ~ 0 2 m d $ J ~ d u J ~ - m d w w 2 f ( v ;  r) .  

Analogous expressions corresponding to (7) and (8) can be written down as 
required. 

(22) 

m 
To continue the reduction, we shall carry out the [ dw operation explicitly, 

J --m 

and reduce the du operation to a kernel function which has been studied in 

connexion with steady, one-dimensional problems. The d$ operation cannot 

be carried out explicitly due to the a, or essentially $, dependence of the boundary 

of the identity 

l" /om 

and collision terms of (19). The dw operations can be carried out by means 

for k = 0,1, . . . and the usual convention that empty products are taken as unity. 

To treat the Jo* du operation, we define 

(24) H J ~ ,  q)  = ~ J du un-2 exp - {h(u -p)2 + q/u}, 

for -00 < p < 00, q > 0, and n = 1,2, .... This function has been discussed in 
Anderson (1963) as well as Anderson & Macomber (1964), where properties, 
algorithms for the evaluation, and tables of the function are given. More gener- 

1 "  

d(2T) 0 

ally, we define 
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for O < a < c o ,  O < p < 2 ~ ,  O < y < c o ,  and n = 1 , 2  ,.... The factor (u-q)z 
can be written in the form 

(u-q)Z = uZ+q2-2u.q (26)  

(27) = [u- pcosl$- $/I2 + [q sin I $  - $\I2. 
With these preliminaries, it  is easily shown that 

U1 
l o a d u r n )  ex~-( (u-q)~/2T+t /hu}  = T"Ki+z(q/ JT, / $ - $ I 3  t/h$3. 

(28) 
Finally, carrying out the 

4. Spherical formulation 
Consider the Krook kinetic equation for a steady, three-dimensional problem : 

hv. (afpx) = v[F - f .  (32 )  

We shall obtain a formal solution of the equation by integrating along the 
characteristic line through x with direction V. We shall exploit the similarities 
to the two-dimensional case considered in 3 2 to abbreviate the discussion here. 

Consider a point P : x  in configuration space which corresponds to a point 
in the gas (see figure 2 ) .  For an arbitrary point Q:v in velocity space with v > 0, 
we define a characteristic line through P with direction 3 = v/o. Define s as 
displacement co-ordinate with origin x and direction 8. The restriction of the 
Krook kinetic equation (32 )  to the characteristic (P, Q) reads 

hv(d/ds),f(v; x + 86) = v(F - f ) .  (33 )  
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Define a reduced co-ordinate t and collision frequency 7 by 

Then, equation (33) can be written 

25 

or 

i XI 

P 

I 

3‘ I x2 

I ? ‘  \ 
\ 

(34) 

(35) 

(36) 

FIGURE 2. Spherical formulation. 

Let B be the first boundary point encountered on traversing the characteristic 
in the ( - 9)-direction, through a distance b(x, 9). Define 

C(X-bb8)  = q(x-bO)b, (37) 

a measure of the number of collisions a particle might suffer in traversing the 
characteristic. As discussed below, the distribution function f is assumed to be 
specified at  B;  hence, we have 

where, for simplicity, we choose the perfect accommodation boundary condition 
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It will prove convenient subsequently to express the vector quantities x, 
v, and q intercha,ngeably in rectangular or spherical polar co-ordinates according 
to the equations 

(40) 

(41) 

i 
i 
I 

x1 = x sin 6 cos e, x = &2, + x; + Xl), 

s = cos-1 (x3/x),  

v = &;+v;+v:), 

e = cOs-1 ( V 3 l v ) ,  

q = d(a2,+&+437 

@ = tan-l ( P 2 / 4 1 ) ,  

6 = cos-l (q3/q). 

x2 = xsinGsine, E = tan-l (x2/xl), 

(42) 

vl = v sin 8 cos #, 
w2 = w sin 0 sin 4, # = tan-1(v2/vl), 

q1 = qsingcos9, 

q2 = qsincsin@, 

Note that the problem is not being completely reformulated in spherical co- 
ordinates, since this would introduce geometric psuedo-force terms and compli- 
cate the definition of characteristics. 

To complete the reduction of the Krook kinetic equation for a steady, two- 
dimensional problem to integral-equation form, we first summarize the relevant 
equations and then proceed to reduce them. Substituting (2) and (39) in (38), 
we obtain 

[v - q,(x - b0)]2 -__ n,(x - b0) 
(27rT, (x - b o p  

-exp- - ( 2T,(x - b0) f(v; x) = 

n(x - so) [v - q(x - $@)I2 t 
2T(x-sv^) -+-I hw - (43) 

Note thatthe parametersof the boundaryterm (c, n,, qB, and TB) and those of the 
collision term ( t ,  n, q, and T) are functions of x and 0 but not of w. For simplicity, 
the arguments of these quantities will be suppressed hereafter. Using the spherical 
polar co-ordinates in velocity spaces defined by (41), (3)-(5) can be written 

3nT+nq2 = /:nd#l:dSsinS/m 0 dww4f(v; x). 

Analogous expressions corresponding to (7) and (8) can be written down as 
required. 

dv operation to the K,  

function defined above. The Jr dB and 1 d# operations cannot be carried out 

explicitly, in general due to the 0, or essentially 6' and #, dependence of the 
integrand. The factor (V - q)2 can be written in the form 

To continue the reduction, we shall reduce the 
277 1: 
0 

(v-q)2 = v2fq2-2V.q 
= v2 + 42 - 2?Jq(0. Q). 

(47) 
(48) 
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Define an angle v(6. G ) ,  such that 0 ,< (T < 277, by 

cosv = 6.Q = sinesin5cos(4-~)+cosecos5. 

With these preliminaries, it is easily shown that 

V1 
exp - ((v - q)2/2T + t/hv) = T&zKl+2(q/JT, (T, t/AJT). (50) 

Finally, carrying out the [ dw operation through (50), equations (44)-(46) can be 
00 

s,” dv J@z) 

J 0  
reduced to the form 

27 

(49) 

Analogous expressions corresponding to (7) and (8) can be written down as 
required. Equations (51)-( 53) constitute the cylindrical formulation of steady, 
three-dimensional problems with the Krook kinetic equation. 

5.  Boundary conditions 
A particular steady-flow problem is specified by defining the interaction of 

gas molecules with material boundaries and the geometric configuration under 
consideration. In  this section, we shall consider the question of boundary con- 
ditions, postponing the formulation of a particular problem until the next 
section. 

Conceptually, we restrict consideration to interior problems, those in which all 
characteristics terminate on a bounding surface at some finite distance b. We 
choose to regard exterior problems, such as the aligned flow over a flat strip to 
be considered below, as a limiting situation in which the conceptual outer bound- 
ary recedes to infinity while all other problem parameters are held fixed. For 
finite A, in the limit as b -+ co, the boundary term in equation (19) or (43) tends 
to zero exponentially, and the free-stream conditions ‘at infinity’ enter the 
problem only implicitly through assumptions on the asymptotic behaviour of 
the solution. The convention, that b + co only after h is specified, is established, 
in part, to remove the ambiguity of the so called ‘free molecular limit’, h -+ co 
in such exterior problems. 

If the characteristic terminates on a boundary at  some finite distance b, we 
must specify the distribution of particles emitted from the surface in the direc- 
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tion defined by the characteristic. In  many respects, the simplest and most 
natural boundary condition is that of perfect accommodation: molecules are 
assumed to be emitted from the boundary with a Maxwellian velocity distribu- 
tion characterized by the local temperature and velocity of the boundary. 
Symbolically, the perfect accommodation boundary condition states 

f ( V ;  x - b6) = FB(v) = ~ B / { ~ ~ T T B } ~  eXp - ((V- q ~ ) ~ / 2 T g ) ,  (54) 

where qB and TB are the local boundary velocity and temperature, respectively. 
nB is a parameter which must be determined as part of the solution of the 
problem so as to assure zero net mass flux normal to the boundary, that is, 
q.BB = 0,  where q is the local fluid velocity adjacent to B and BB is the unit 
normal vector to the bounding surface at  B. Usually, qB and TB will be specified 
ab initio, but they could be determined as part of the problem if equations de- 
fining the dynamic and thermodynamic characteristics of the boundary were 
adjoined. 

As will appear shortly, perfect accommodation is the easiest boundary con- 
dition to work with; moreover, this would seem to be the natural boundary 
condition to associate with the Krook kinetic equation. The statistical model of 
molecular interactions, which constitutes the right side of equation (I), can 
be interpreted as a statement to the effect that those particles in a given phase 
space element dxdv which have suffered a collision during the time interval dt 
may be characterized, on the average, by a local Maxwellian velocity distribu- 
tion. On the other hand, a perfect accommodation boundary condition could be 
interpreted as a similar statement concerning molecule-boundary collisions. 
For these reasons of simplicity and naturalness, the perfect accommodation 
boundary condition was used in the plane Couette flow with heat-transfer prob- 
lem considered previously, and in the generalizations to be considered in the 
present work. 

It is well known, however, that a perfect accommodation boundary condition 
is but a rough, though reasonable, approximation to physical reality; the same 
might be said of the Krook kinetic equation. A somewhat more sophisticated, 
though still over-simplified, boundary condition is Maxwell’s partial accommoda- 
tion boundary condition. In  this case, it is assumed that the flux emitted from the 
boundary is a superposition of two species of molecules: first, a class of fulls 
thermalized or accommodated molecules, and second, a class of specularil y 
reflected molecules. Symbolically, such a boundary condition would read 

f(v; x - b 6 )  = aFB+(l-a)fR, (55 )  

where a is an accommodation coefficient, FB is the boundary Maxwellian defined 
above, and f R  is the distribution of specularily reflected molecules incident at 
B with velocity v - 2v. aB. Clearly a formal expression for f E  can be obtained 
by specializing (19) or (43) above along the characteristic through B with direc- 
tion v - 2v.aB and terminating at  some other boundary point B’, which must 
then be treated in analogous fashion. The final equation, corresponding to (19) 
or (43), obtained with this partial accommodation boundary condition is con- 
siderably complicated by the fact that the significant history of a particle extends 
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beyond the time of its last encounter with the boundary. The equation will, 
in general, consist of an infinite sequence of integrals over a broken line sequence 
of characteristics. Conceptually, a more general boundary condition involving 
the integrated effect of all characteristics emanating from B could be formulated, 
but the resulting equations would be far too cumbersome to work with in practice. 
Indeed, even partial accommodation is amenable to treatment only in geometri- 
cally simple configurations. For simplicity, we restrict consideration in the 
present work to the case of total accommodation (a  = 1). 

To investigate the effect of accommodation coefficients in the typical range 
0.75 < a < 1 on the solutions of the Krook kinetic equation, it is proposed 
shortly to repeat certain of the plane Couette flow with heat transfer calculations 
using the more general boundary conditions. Because of the simplicity of the 
plane parallel geometry, the complexity of the governing equations is not unduly 
increased. Although they are intrinsically more complex by virtue of their 
geometry, exterior problems, such as the aligned flow over a flat strip to be dis- 
cussed below, can relatively easily be generalized from total to partial accommo- 
dation boundary conditions. For a flow around a convex body, the reflected 
characteristic extends to inSnity and no complicated multiple-reflexion pattern 
is involved. 

6. Formulation of a particular problem 
In  this section, we shall formulate a specific example of a steady problem with 

the Krook kinetic equation. Choosing a total accommodation boundary con- 
dition, such a formulation reduces to the definition of the geometric configuration, 
the associated geometric factors b and i?’, and the boundary data qB and Ts. 
Certain computational aspects of the resulting equations will be discussed 
briefly; however, the description of detailed numerical procedures and solutions, 
as well as the choice of specific models for the collision frequency v, will be de- 
ferred to subsequent papers of this series in which a sequence of specific problems 
will be discussed. 

A steady problem of great historical and experimental interest, and one of the 
simplest problems geometrically, is the aligned flow over a finite strip. This 
problem is typical of a class of exterior, two-dimensional cylinder flows described 
by equations (29)-(31). A close cousin of the finite-strip problem which is some- 
what similar but more complicated, is the axisymmetric flow around a sphere 
described by equations (51)-(53). For the sake of brevity, only the finite-strip 
problem will be formulated here, but the sphere problem is readily accessible. 
These two problems involve a wide range of flow phenomena: slip, boundary- 
layer growth, wakes, edge and curvature effects, and even shock structure. As a 
result, such problems represent probably the pikce de rksistance rather than 
the hors d’oeurve in any investigation of the integral formulation of the Krook 
kinetic equation. Nevertheless, some of the computational questions involved 
can be surveyed at  this stage. 

Consider the aIigned flow over a flat strip in a frame of reference fixed with 
respect to the strip, as shown schematically in figure 3. We choose the character- 
istic quantities z, E ,  T, and sj with respect to which the problem is made dimen- 
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sionless, so that the strip is of unit width and so that r . g1 + - co implies that 
n -+ T -+ v -+ 1 and q -+ Qg1. By construction, we have g ,  = 0. The simplest 
version of the problem is that in which TB takes on some given constant value 
across the strip. However, one could consider a more complicated situation in 
which TB assumes a constant value across the strip which is to be determined as 
part of the problem, or the even more complicated situation in which TB is 
allowed to vary across the strip in a manner to be determined from an additional 
equation describing the heat flow through the strip. Due to the symmetry of 
the problem we restrict attention to the half plane x2 > 0, whence fiB = e2. 
Thus, nB is to  be determined as a function of position on the strip so that q2 = 0 
for 0 < x1 < 1. 

x2 

v/Cd,  i h 

, , t o 1  - 

P 

Consider the characteristic line through P: (xl, x2)  with direction #, whose 
intersection with the x2 = 0 axis is the point (d, 0), where 

d = x2 - XI cot $75. 

b = 4{$ + (XI - G Z ) ~ } .  

(56 )  

(57) 

If d( 1 - d )  > 0, the characteristic terminates on the strip with finite b given by 

If d(1 - d )  < 0, the characteristic extends to infinity (recall the convention 
established above for the meaning attributed to b = a). 

(58) 
Defining 

G,(Y) = Hn(0, Y) = K,(O, P, Y), 
we can summarize the equations for the finite-strip problem as 
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The numerical solution of these equations is a formidable undertaking. The wide 
variety of flow phenomena referred to above must be reflected in the structure 
of the numerical procedures employed, raising many knotty computational ques- 
tions. At this stage, we shall simply comment briefly on several aspects of the 
problem which are accessible without delving too deeply into the numerical 
analysis. 

It is of great practical, if not intellectual, import that the kernel function 
K,(a,p, y) ,  appearing in the equations derived above, can be regarded as a 
known quantity. A substantial fraction of the effort expended on the one- 
dimensional Couette flow with heat transfer and shock-structure problems was 
devoted to the study of the properties of the G, and H, functions which arise 
in these problems. Consequently, we are now in a position to comment on the 
nature of the kernel function arising in the general two- and three-dimensional 
problems, as formulated here. We note first that the lowest order, n, of the kernel 
functions entering the equations is equal to the dimensionality of the problem: 
1 for the plane Couette flow with heat transfer and shock-structure problems, 2 for 
the finite-strip problem, and 3 for the sphere problem. Since we have 

Kn(a,p,r) = O(yn-llny), as Y -+ 0, (62) 

the most singular kernel involved is logarithmically unbounded for n = 1 but 
bounded and progressively less singular for n = 2 and 3. The nature of the 
singularities of the kernel functions involved in the equations is seen to be an 
artifact of the geometry of the problem under consideration. 

In  the limit y -+ co, &(a, p,y) -+ 0 exponentially rapidly, but at a rate which 
is strongly dependent upon a and p. The component function H,(p, y )  is a very 
asymmetric function of p :  for fixed y, 23, varies as pn-2 for large positive p 
but as e-*p8 for large negative p .  In  addition, the rate of decay of H, with y is a 
decreasing function of p and of n. If we imagine the topography of K,(a,p, y) ,  
for fixed a, over a plane with polar co-ordinates y and j9, we see that the bulk of 
the kernel is concentrated near the ray p = 0 and extends in y over a distance 
which is an increasing function of a and m. This ‘focusing ’ effect is most relevant 
in the supersonic dgirne, where a is large, but is present in some measure in all 
problems involving fluid motion. While K,  is a strictly monotonic decreasing 
function of y, the effective kernel function appearing in the equations will not 
in general be monotonic due to the implicit dependence of a, p and y on the vari- 
able of integration. Clearly, the integrals to be performed in (59)-(61) are con- 
siderably more complicated than appears on the surface. 

A second salient feature of the class of steady problems with the Krook 
kinetic equation is the so-called ‘curse of dimensionality’: the fact that the 
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labour involved in solving a problem tends to increase exponentially rather than 
algebraically with the dimensionality of the problem. The computing time 
required to solve a system of non-linear integral equations such as those derived 
above can be roughly characterized by a number M which is the product of three 
factors : 

MI, the number of quadrature sample points used to approximate the integral 

M,, the number of interpolation sample points used to approximate the 

M3, the number of iterations required to obtain an answer to the discrete 

operators; 

dependent variables, and 

analog of the analytic problem within a prescribed residual. 

For purposes of comparison, let a typical one-dimensional problem like the 
Couette flow with heat transfer or shock-structure problems be characterized 
by the triplet (ml,m,,m3). The corresponding triplets for the finite strip and 
sphere problems would be roughly (m:, m;, mi )  and (m!, m!, m:) respectively. 
Typically, one would have 100 2 m, 2 m2 2 m3 2 10. Consideration of an ex- 
terior rather than an interior problem will, in general, increase M, and M., and 
indirectly M3. MI would be substantially increased if a partial accommodation 
boundary condition were used, and both M, and M3 might be expected to increase 
with the complexity of the sub-structures of the flow, for example, in the presence 
of shock waves. One can make the crude estimate M3 w M,; while this may be 
pessimistic for large h where convergence tends to be quite rapid, it  may be real- 
istic or even optimistic for h 5 1, depending on the type of iterative procedure 
employed. These are but qualitative estimates of M; nevertheless, it is clear that 
there is a drastic increase in computational complexity in going from one- 
dimensional to multi-dimensional problems. 

Of similar import is another feature of the transition from one to several space- 
dimensions. In  steady, one-dimensional problems, one can obtain solutions 
which are universal in the sense that the free parameter of the statistical model, 
the collision frequency u, can be suppressed. This can be done by defining a 
reduced independent variable t proportional to the integral of u along the charac- 
teristic direction; since there is only one such direction, the problem can be solved 
wholly in terms oft, with the inverse transformation from t to s being relegated 
to a subsidiary a posteriori calculation. The use of the reduced variable t as the 
independent variable reduces the computation time required by roughly an 
order of magnitude. Unfortunately, in the two- and three-dimensional equations 
formulated above, t is defined along individual characteristics and cannot be 
used as the fundamental independent variable. The transformation between s 
and t is implicitly contained in the equations in a fashion which must be made 

explicit at the time of solution. One can carry out the dt operations as they stand 

or in the form ds Y. In  the first case, the s-t transformation is involved in the 

arguments of the dependent variables appearing in the integrand, and in the 
second case, in the argument of the kernel function. The first choice distributes 

1: 
s,” 
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the quadrature sample points optimally with respect to the natural local scale 
of the problem; however, the second choice is favoured by the greater facility 
with which the transformation from t to s rather than the inverse transformation 
from s to t can be carried out. No universal solutions, in the sense defined above, 
are possible; however, one should clearly solve the analogous reduced problem 
v = 7 = 1 first, in which case t 2 s. The essential features of the flow are deter- 
mined by the geometry, the degree of rarefaction (as reflected in A) ,  and the 
conservation laws, and not by the details of the collision processes. Only when 
there are large gradients in the macroscopic dependent variables will the profiles 
be greatly altered by the dependence of v on n and T.  After this fundamental 
set of solutions is obtained, the effects of variable v can be inserted as perturba- 
tions. This should mitigate the drastic order of magnitude increase in computation 
time occasioned by the appearance of the s-t transformation in the equations. 

One final point should be made, even though it is concerned more with numeri- 
cal analysis than kinetic theory. Generally speaking, one solves a non-linear 
continuous problem like the integral equations considered here by replacing the 
analytic problem by a discrete analogue and solving the resulting finite system 
of non-linear algebraic or transcendental equations. Only after analysing how 
accurately the discrete problem has been solved can one investigate the relation- 
ship of the answer obtained to the solution of the original problem. In  linear 
problems, a well-posed analytic problem usually results in a well-posed discrete 
problem; in non-linear problems, it is not true, in general that a well-posed 
analytic problem leads to a well-posed discrete problem. The ‘solution’ of the 
discrete problem may fail to exist or to be unique, and the ‘answer’ obtained may 
simply satisfy the equations ‘best ’, in some sense. Such an occurrence severely 
complicates any attempt at error analysis; indeed, one is often faced with the 
phenomenon, familiar in the study of asymptotic series, of a lower bound on the 
accuracy which a given numerical procedure can provide. There is evidence to 
suggest that such considerations are operative in some of the procedures proposed 
for the solution of the integral equations of interest here. 

The problem of the aligned flow over a finite strip is probably accessible with 
present day computers; however, it would be nayve to begin an investigation of 
the integral formulation of the steady Krook kinetic equation for multi-dimen- 
sional problems with such a potentially complex problem. Rather, one must 
first consider a sequence of simpler problems which isolate certain properties 
of the full equations in more tractable form, hoping that the experience gained 
will enable one to tackle more complicated problems. 

A prime candidate for such a sequence of simpler problems is the class of 
cylindrical analogues of the Couette flow with heat-transfer problem considered 
previously. The primary reason for this choice is the simplification induced by 
the symmetry and interior character of this geometry. However, rotating fluids 
are of some interest in their own right, and the cylindrical geometry is more 
amenable to experimental simulation than the plane parallel geometry. We 
shall outline below a set of problems of this class, indicating the features of the 
general equations isolated in each. Calculations are substantially completed for 
the first problem, and will be reported shortly. 
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The first problem to be considered is the pure heat-transfer problem. The 
complexity of the cylindrical geometry, as reflected in equations (29)-(31), 
is somewhat mitigated by the azimuthal symmetry, which reduces M, and, hope- 
fully, N,, but not Nl. In  this problem we can isolate the geometric features of the 
problem and the complexity of the required quadratures, while eschewing the 
added complication of the K ,  kernel for the relative simplicity of the G, kernel. 
The corresponding heat-transfer problem for concentric spheres is described 
by essentially the same equations as the cylindrical case, and the two heat- 
transfer problems are conveniently treated in parallel. 

The second problem to be considered is the degenerate Couette flow problem 
in which the inner cylinder is absent. The geometry is simplified in order to 
investigate two new features of the problem: the effect of local variations in the 
degree of rarefaction and of the flow velocity dependence of the K,  kernel 
functions. In  the interior of a rapidly rotating cylinder, one can span a sub- 
stantial portion of the transition flow rdgime, through the density variation 
induced by centrifugal forces. The azimuthal symmetry of the flow field allows 
one to investigate coiiveniently the computational implications of the ' focusing 
effect ' inherent in the K,  kernel functions. 

Finally, the combined Couette flow with heat-transfer problem can be studied, 
including various special cases of limiting geometric configurations and boundary 
conditions. With this backlog of experience it may be feasible to tackle at 
least the subsonic finite-strip problem. 

7. Concluding remarks 
The stage has been set for the solution of a sequence of steady problems in 

two and three space-dimensions with the integral-equation formulation of the 
Krook kinetic equation. Some background and motivation for the study, the 
derivation of the general equations, and a discussion of some of the features of 
these equations have been given. Specialization to particular problems and the 
details of the numerical procedures employed will be forthcoming shortly. 

This work was supported in part by the National Science Foundation under 
Grants GP-414 and GK-65, and by the Division of Engineering and Applied 
Physics, Harvard University. 
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